
astroalign Documentation
Release 2.0

Martin Beroiz

Jul 26, 2019

Contents

1 Guide: 3
1.1 Installation . 3
1.2 Tutorial . 3
1.3 Module API . 6

2 Indices and tables 9

Python Module Index 11

Index 13

i

ii

astroalign Documentation, Release 2.0

ASTROALIGN is a python module that will try to register (align) two stellar astronomical images, especially when
there is no WCS information available.

It does so by finding similar 3-point asterisms (triangles) in both images and estimating the affine transformation
between them.

Generic registration routines try to match point features, using corner detection routines to make the point corre-
spondence. These generally fail for stellar astronomical images, since stars have very little stable structure and so,
in general, indistinguishable from each other. Asterism matching is more robust, and closer to the human way of
matching stellar images.

Astroalign can match images of very different fields of view, point-spread functions, seeing and atmospheric condi-
tions.

You can find a Jupyter notebook example with the main features at http://toros-astro.github.io/astroalign.

Note: It may not work, or work with special care, on images of extended objects with few point-like sources or in
very crowded fields.

Note: If your images contain a large number of hot pixels, this may result in an incorrect registration. Please refer to
the tutorial for how to solve this problem using CCDProc’s cosmic-ray remover.

Contents 1

http://toros-astro.github.io/astroalign
https://ccdproc.readthedocs.io/en/latest/api/ccdproc.cosmicray_lacosmic.html

astroalign Documentation, Release 2.0

2 Contents

CHAPTER 1

Guide:

1.1 Installation

The easiest way to install is using pip:

pip install astroalign

This will install the latest stable version on PIPy.

If you want to use the latest development version from github, unpack or clone the repo on your local machine, change
the directory to where setup.py is, and install using setuptools:

python setup.py install

or pip:

pip install .

1.2 Tutorial

1.2.1 A simple usage example

Note: Check this Jupyter notebook for a more complete example.

Suppose we have two images of about the same portion of the sky, and we would like to transform one of them to fit
on top of the other one. Suppose we do not have WCS information, but we are confident that we could do it by eye,
by matching some obvious asterisms on the two images.

In this particular use case, astroalign can be of great help to automatize the process.

3

https://github.com/toros-astro/astroalign
http://toros-astro.github.io/astroalign/

astroalign Documentation, Release 2.0

After we load our images into numpy arrays, we simple choose one to be the source image to be transformed and the
other to be the target.

Note: astroalign will also accept as input, data objects with data and mask properties, like NDData, CCDData and
Numpy masked arrays. For more information, see Dealing with Data Objects with data and mask properties (NDData,
CCDData, Numpy masked arrays)

The usage for this simple most common case would be as follows:

>>> import astroalign as aa
>>> registered_image, footprint = aa.register(source, target)

registered_image is now a transformed (numpy array) image of source that will match pixel to pixel to
target.

footprint is a boolean numpy array, True for masked pixels with no information.

Warning: Flux may not be conserved after the transformation.

1.2.2 Mask Fill Value

If you need to mask the aligned image with a special value over the region where transformation had no pixel infor-
mation, you can use the footprint mask to do so:

>>> registered_image, footprint = aa.register(source, target)
>>> registered_image[footprint] = -99999.99

Or you can pass the value to the fill_value argument:

>>> registered_image, footprint = aa.register(source, target, fill_value=-99999.99)

Both will yield the same result.

1.2.3 Finding the transformation

In some cases it may be necessary to inspect first the transformation parameters before applying it, or we may be
interested only in a star to star correspondence between the images. For those cases, we can use find_transform.

find_transform will return a scikit-image SimilarityTransform object that encapsulates the matrix transforma-
tion, and the transformation parameters. It will also return a tuple with two lists of star positions of source and its
corresponding ordered star postions on the target image.:

>>> transf, (source_list, target_list) = aa.find_transform(source, target)

source and target here can be either numpy arrays of the image pixels, or any iterable (x, y) pair, corresponding to a
star position.

The transformation parameters can be found in transf.rotation, transf.traslation, transf.scale
and the transformation matrix in transf.params.

If the transformation is satisfactory, we can apply it to the image with apply_transform. Continuing our example:

4 Chapter 1. Guide:

http://scikit-image.org
http://scikit-image.org/docs/dev/api/skimage.transform.html#skimage.transform.SimilarityTransform

astroalign Documentation, Release 2.0

>>> if transf.rotation > MIN_ROT:
... registered_image = aa.apply_transform(transf, source, target)

1.2.4 If you know the star-to-star correspondence

Note: estimate_transform from scikit-image is imported into astroalign as a convenience.

If for any reason you know which star corresponds to which other, you can call estimate_transform.

Let us suppose we know the correspondence:

• (127.03, 85.98) in source –> (175.13, 111.36) in target

• (23.11, 31.87) in source –> (0.58, 119.04) in target

• (98.84, 142.99) in source –> (181.55, 206.49) in target

• (150.93, 85.02) in source –> (205.60, 91.89) in target

• (137.99, 12.88) in source –> (134.61, 7.94) in target

Then we can estimate the transform:

>>> src = np.array([(127.03, 85.98), (23.11, 31.87), (98.84, 142.99),
... (150.93, 85.02), (137.99, 12.88)])
>>> dst = np.array([(175.13, 111.36), (0.58, 119.04), (181.55, 206.49),
... (205.60, 91.89), (134.61, 7.94)])
>>> tform = aa.estimate_transform('affine', src, dst)

And apply it to an image with apply_transform or to a set of points with matrix_transform.

1.2.5 Applying a transformation to a set of points

Note: matrix_transform from scikit-image is imported into astroalign as a convenience.

To apply a known transform to a set of points, we use matrix_transform. Following the example in the previous
section:

>>> dst_calc = aa.matrix_transform(src, tform.params)

dst_calc should be a 5 by 2 array similar to the dst array.

1.2.6 Dealing with Data Objects with data and mask properties (NDData, CCDData,
Numpy masked arrays)

If your input data comes in the form of ccdproc’s CCDData or astropy’s NDData or a numpy masked array, there are
a few ways to interact with astroalign.

In general, for objects with data and mask properties, it is convenient to transform their masks along with the data and
to add the footprint onto the mask.

Astroalign provides this functionality with the propagate_mask argument to register and apply_transform.

1.2. Tutorial 5

http://scikit-image.org/docs/dev/api/skimage.transform.html#skimage.transform.estimate_transform
http://scikit-image.org/docs/dev/api/skimage.transform.html#skimage.transform.matrix_transform
https://ccdproc.readthedocs.io
http://docs.astropy.org/en/stable/api/astropy.nddata.CCDData.html
https://www.astropy.org
https://docs.astropy.org/en/stable/api/astropy.nddata.NDData.html
http://www.numpy.org
https://www.numpy.org/devdocs/reference/maskedarray.generic.html

astroalign Documentation, Release 2.0

For example:

>>> from astropy.nddata import NDData
>>> nd = NDData([[0, 1], [2, 3]], [[True, False], [False, False]])

and we want to apply a clockwise 90 degree rotation:

>>> import numpy as np
>>> from skimage.transform import SimilarityTransform
>>> transf = SimilarityTransform(rotation=np.pi/2., translation=(1, 0))

Then we can call astroalign as usual, but with the propagate_mask set to True:

>>> aligned_image, footprint = aa.apply_transform(transf, nd, nd, propagate_mask=True)

This will transform nd.data and nd.mask simultaneously and add the footprint mask from the transformation onto
nd.mask:

>>> aligned_image
array([[2., 0.],

[3., 1.]])
>>> footprint
array([[False, True],

[False, False]])

Creating a new object of the same input type is now easier:

>>> new_nd = NDData(aligned_image, mask=footprint)

The same will apply for CCDData objects and Numpy masked arrays.

1.2.7 Dealing with hot pixels

Hot pixels always appear on the same position of the CCD. If your image is dominated by hot pixels, the source
detection algorithm may pick those up and output the identity tranformation.

To avoid this, you can use CCDProc’s cosmicray_lacosmic to clean the image before trying registration:

from ccdproc import cosmicray_lacosmic as lacosmic
clean_image = lacosmic(myimage)

See Module API for the API specification.

1.3 Module API

ASTROALIGN is a simple package that will try to align two stellar astronomical images, especially when there is no
WCS information available.

It does so by finding similar 3-point asterisms (triangles) in both images and deducing the affine transformation be-
tween them.

General registration routines try to match feature points, using corner detection routines to make the point correspon-
dence. These generally fail for stellar astronomical images, since stars have very little stable structure and so, in
general, indistinguishable from each other.

6 Chapter 1. Guide:

https://ccdproc.readthedocs.io/en/latest/api/ccdproc.cosmicray_lacosmic.html

astroalign Documentation, Release 2.0

Asterism matching is more robust, and closer to the human way of matching stellar images.

Astroalign can match images of very different field of view, point-spread functions, seeing and atmospheric conditions.

(c) Martin Beroiz

astroalign.MAX_CONTROL_POINTS = 50
The maximum control points (stars) to use to build the invariants.

Default: 50

astroalign.MIN_MATCHES_FRACTION = 0.8
The minimum fraction of triangle matches to accept a transformation.

If the minimum fraction yields more than 10 triangles, 10 is used instead.

Default: 0.8

exception astroalign.MaxIterError

astroalign.NUM_NEAREST_NEIGHBORS = 5
The number of nearest neighbors of a given star (including itself) to construct the triangle invariants.

Default: 5

astroalign.PIXEL_TOL = 2
The pixel distance tolerance to assume two invariant points are the same.

Default: 2

astroalign.apply_transform(transform, source, target, fill_value=None, propagate_mask=False)
Applies the transformation transform to source.

The output image will have the same shape as target.

Parameters

• transform – A scikit-image SimilarityTransform object.

• source (numpy array) – A 2D numpy array of the source image to be transformed.

• target (numpy array) – A 2D numpy array of the target image. Only used to set the
output image shape.

• fill_value (float) – A value to fill in the areas of aligned_image where footprint ==
True.

• propagate_mask (bool) – Wether to propagate the mask in source.mask onto footprint.

Returns A tuple (aligned_image, footprint). aligned_image is a numpy 2D array of the transformed
source footprint is a mask 2D array with True on the regions with no pixel information.

astroalign.find_transform(source, target)
Estimate the transform between source and target.

Return a SimilarityTransform object T that maps pixel x, y indices from the source image s = (x, y) into the target
(destination) image t = (x, y). T contains parameters of the tranformation: T.rotation, T.translation,
T.scale, T.params.

Parameters

• source (array-like) – Either a numpy array of the source image to be transformed or
an interable of (x, y) coordinates of the target control points.

• target (array-like) – Either a numpy array of the target (destination) image or an
interable of (x, y) coordinates of the target control points.

1.3. Module API 7

astroalign Documentation, Release 2.0

Returns

The transformation object and a tuple of corresponding star positions in source and target.:

T, (source_pos_array, target_pos_array)

Raises

• TypeError – If input type of source or target is not supported.

• Exception – If it cannot find more than 3 stars on any input.

astroalign.register(source, target, fill_value=None, propagate_mask=False)
Transform source to coincide pixel to pixel with target.

Parameters

• source (numpy array) – A 2D numpy array of the source image to be transformed.

• target (numpy array) – A 2D numpy array of the target image. Only used to set the
output image shape.

• fill_value (float) – A value to fill in the areas of aligned_image where footprint ==
True.

• propagate_mask (bool) – Wether to propagate the mask in source.mask onto footprint.

Returns A tuple (aligned_image, footprint). aligned_image is a numpy 2D array of the transformed
source footprint is a mask 2D array with True on the regions with no pixel information.

8 Chapter 1. Guide:

CHAPTER 2

Indices and tables

• genindex

• search

9

astroalign Documentation, Release 2.0

10 Chapter 2. Indices and tables

Python Module Index

a
astroalign, 6

11

astroalign Documentation, Release 2.0

12 Python Module Index

Index

A
apply_transform() (in module astroalign), 7
astroalign (module), 6

F
find_transform() (in module astroalign), 7

M
MAX_CONTROL_POINTS (in module astroalign), 7
MaxIterError, 7
MIN_MATCHES_FRACTION (in module astroalign), 7

N
NUM_NEAREST_NEIGHBORS (in module astroalign), 7

P
PIXEL_TOL (in module astroalign), 7

R
register() (in module astroalign), 8

13

	Guide:
	Installation
	Tutorial
	Module API

	Indices and tables
	Python Module Index
	Index

